
On the Average Path Length in Decision Diagrams of

Multiple-Valued Functions∗

J. T. Butler† and T. Sasao‡
†Dept. of Electrical and Computer Eng., Naval Postgraduate School,
Code EC/Bu, Monterey, CA 93943-5121, USA, jbutler@nps.navy.mil

‡Dept. of Computer Science and Electronics, Kyushu Institute of Technology,
Iizuka, Fukuoka, 820-8502 JAPAN, sasao@cse.kyutech.ac.jp

Abstract

We consider the path length in decision diagrams
for multiple-valued functions. This is an important
measure of a decision diagram, since this models the
time needed to evaluate the function. We focus on
the average path length (APL), which is the sum
of the path lengths over all assignments of values
to the variables divided by the number of assign-
ments. First, we show a multiple-valued function
in which the APL is markedly affected by the order
of variables. We show upper and lower bounds on
the longest path length in a decision diagram of a
multiple-valued function. Next, we derive the APL
for individual functions, the MAX, ALL MAX, and
MODSUM functions. We show that the latter two
functions achieve the lower and upper bound on the
APL over all n-variable r-valued functions. Finally,
we derive the average of the APL for two sets of
functions, symmetric functions and all functions.

1 Introduction

The binary decision diagram or BDD has been
useful in the design, analysis, and verification of
binary-valued functions because it represents, for
many functions, a compact means to store com-
plexity. Switching function BDDs have a history
dating back 40 years [7]. The application of de-
cision diagrams to multiple-valued functions has a
25 year history [18], with most of the contribu-
tions [1,2,5,6,10,11,13,16,17] occurring in the last 10
years.

The classic problem in studies of BDDs and their
∗Research supported by the Japan Society for the Promo-

tion of Science.

multiple-valued variants has been to minimize the
number of nodes. Reducing the number of nodes
has the effect of reducing the storage needed to rep-
resent a function. Indeed, this problem is embedded
in the descriptor reduced ordered decision diagram
or ROBDD, in which the number of nodes is re-
duced by combining into one node those nodes that
represent the same subfunction. The problem then
has been to find an ordering of variables such that
the total number of nodes is minimized.

Within the recent past, a related problem has
emerged. This is the minimization of the average
path length or APL in a BDD [8,15]. In this case,
one minimizes the average number of arcs that are
traversed from the root node to a terminal node over
all assignments of values to the variables. Reducing
the APL has the effect of reducing the average time
to evaluate the function value given an assignment
of values to the variables.

Decision diagrams are used to model database
systems [4]. When a multiple-valued function is
used to represent access to a database, the variables
represent parameters of the data and the function
value represents the data. In this case, one seeks an
ordering of the parameters (variables) such that, on
the average, the fewest parameter checks are needed
to access the data. The APL is also useful in the
development of fast embedded software [9].

Fig. 1 shows the significance of ordering the
variables in a multiple-valued decision diagram or
MDD. The circuit for the Carry Out of a d-digit
r-valued ripple carry adder is shown in Fig. 1a. In
Fig. 1b, an MDD is shown where the variables are
ordered so that the most significant digits (MSDs)
are lower and the least significant digits are higher.
At the very top is the carry-in, cin, assumed to be
0 or 1.

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAY 2003 2. REPORT TYPE

3. DATES COVERED

4. TITLE AND SUBTITLE
On the Average Path Length in Decision Diagrams of Multiple-Valued
Functions

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School,Department of Electrical and Computer
Engineering,Monterey,CA,93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
We consider the path length in decision diagrams for multiple-valued functions. This is an important
measure of a decision diagram, since this models the time needed to evaluate the function. We focus on the
average path length (APL), which is the sum of the path lengths over all assignments of values to the
variables divided by the number of assignments. First, we show a multiple-valued function in which the
APL is markedly affected by the order of variables. We show upper and lower bounds on the longest path
length in a decision diagram of a multiple-valued function. Next, we derive the APL for individual
functions, the MAX, ALL MAX, and MODSUM functions. We show that the latter two functions achieve
the lower and upper bound on the APL over all n-variable r-valued functions. Finally we derive the
average of the APL for two sets of functions, symmetric functions and all functions.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

cin

Carry Out
FA FAFAFA

A0A1Ad-1 A2

B0B1Bd-1 B2

(a) Carry Out of a d-digit ripple carry adder circuit.

01…r-2

r-1

2

 0 1

cin

1
0

r-3

0 1

1

B0

0 A0

A1

Bd-1

r-2

r-1

r-2

r-1

12…r-1
0

01

23…r-1
01

23…r-1

01…r-2

r-1

23…r-1
01

23…r-3
01

23…r-1
0

01r-2 r-1

B1

(b) MDD for Carry Out with MSD at bottom.

r-2

01…r-2
r-1

 0 1

cin

1

Bd-1

0

Ad-1

Ad-2

r-1

r-2

r-1

12…r-100

23…r-1

0 1

Bd-2

23…r-1

1
01…r-3

(c) MDD for Carry Out with MSD at top.

Figure 1: Two decision diagrams for the Carry Out
function of a d-digit ripple carry adder.

Since this is a recursive structure, the recurrence
relation

APLcarry(d, r) = APLcarry(d− 1, r) + 2− 1
r

(1)

describes the average path length through this
MDD, where d is the number of digits in each of
the two summands, and r is the number of val-
ues. This can be seen as follows. The section in
the MDD associated with Ad−1 and Bd−1 adds 1 to
APLcarry(d − 1, r) for 1

r of the values assigned to
Ad−1 and Bd−1 and adds 2 for the remaining r−1

r
of the values. This yields the recurrence relation
APLcarry(d, r) = (1/r)(APLcarry(d − 1, r) + 1) +
((r− 1)/r)(APLcarry(d− 1, r) + 2), which is identi-
cal to (1). Solving this recurrence relation with the
initial condition APLcarry(1, r) = 3− 1

r , yields

APLcarry(d, r) = 2d + 1− d

r
.

Since it will be convenient for comparison later, we
describe the APL in terms of the number of vari-
ables n = 2d+1, two for every digit and cin. When
the number of variables is large, we can write

APLcarry(n, r) ∼ (2r − 1)
2r

n,

where α(n) ∼ β(n) means limn→∞
α(n)
β(n) = 1. Now,

consider the reverse ordering, where the MSDs are
at the top, as shown in Fig. 1c. In this case, the
average path length is described by the recurrence
relation

APLcarry(d, r) =
1
r
APLcarry(d− 1, r) + 2. (2)

This can be seen as follows. All paths from the
root node begin with an edge that goes to a node
labeled by Bd−1. From any node at this level, there
are r−1 edges to a terminal node. Thus, (r−1)/r of
the paths from the root node have length 2. From
any node at the Bd−1, level there is exactly one edge
to a node labelled Ad−2. The average path length
of such paths is 2 + APLcarry(d − 1, r), since the
node labelled Ad−2 is the root node of an MDD for
a Carry Out circuit with d − 1 digits. Therefore,
APLcarry(d, r) = (1/r)(APLcarry(d − 1, r) + 2) +
((r − 1)/r)2, which is identical to (2).

We can solve (2) as follows. When d = 1, the
MDD has three variables A0, B0, and ci. All paths
in this MDD have length 2 except for 1

r of them,
which have length 3. That is, all paths begin with

2

an edge from the root node to a node labelled B0,
and one out of r of the paths from a node at this
second level goes to a node at the next level (labelled
by ci and having length 3), while the other edges go
to a terminal node (having length 2). Therefore,
APLcarry(1, r) = 2 + 1

r . By repeated substitution,
we have

APLcarry(d, r) =
1
rd

+2(
1

rd−1
+

1
rd−2

+ · · ·+ 1
r

+ 1). (3)

The series within the parentheses is (1− 1
rd /(1− 1

r).
The number of variables n is related to d as n =
2d+1. Substituting both of these into (3) yields an
expression for APLcarry(n, r).

APLcarry(n, r) =
1

r(n−1)/2
+ 2

1− 1
r(n−1)/2

1
− 1

r
.

When n is large, we can write

APLcarry(n, r) ∼ 2
1− 1

r

.

This is independent of n. Both orderings result in
an MDD with approximately the same number of
nodes, but the second, with the MSD at the top,
has a much lower APL. Its APL approaches a con-
stant, as the number of variables increases, while
the ordering with the MSD at the bottom yields
an APL that is approximately proportional to the
number of variables.

2 The Worst Case Path
Length

In this section, we consider the worst case path
length in an MDD. Specifically, we seek bounds on
the length of the longest path in a decision dia-
gram of a multiple-valued function. Fig. 1b and
1c show two orderings for the same function, both
of which have at least one path of length n = 2d+1,
the number of variables. Since no path can have a
length longer than the number of variables, this is
the longest path. The fact that n is the longest
path in the MDD of the carry-out function asso-
ciated with all orderings can be seen as follows.
Consider the path associated with the assignment
of values Ad−1 = Ad−2 = . . . = A0 = m − 2,
Bd−1 = Bd−2 = . . . = B0 = 1, and cin = 1. The
carry-out for this case is 1. If any one of these vari-
ables is reduced, the carry-out is 0. Thus, no matter

x2

 0 1 2

0
1

2

0

2
1

x3

1
0

2

x8

x9

x10

x4

0

1

2

x11

x12

x13

x1

x5

x6

x7

Figure 2: The MTREE function, a function whose
MDD has a maximum path length that is small.

how the variables are ordered in an MDD, the value
of all variables must be known in order to determine
carry-out. This implies that there is a path of length
2d + 1 in any MDD of the Carry-Out regardless of
the order of the variables. Thus, we can state

Lemma 2.1. The longest path length in an MDD
of an n-variable r-valued function is bounded above
by n. There is a function that achieves this bound.

Indeed, many functions achieve the upper bound.
However, not all MDDs do. Fig. 2 shows the MDD
of a 3-valued MTREE function. Here, each non-
terminal node is labelled by a distinct variable.

Lemma 2.2. The longest path length in an MDD
of an n-variable r-valued function is bounded below
by dlogr(rn− n− r + 2)e. There is a function that
achieves this bound.

Proof A lower bound on the longest path length
in an MDD of a n-variable r-valued function occurs
for the MTREE function. In this function, there
are n nodes, exactly one for each variable. For an
MTREE function, denote the longest path length as
L. Then, the number of nodes n ranges as follows.

1 +
1− rL

1− r
= 1 + 1 + r + r2 + ... + rL−1

3

≤ n ≤ 1 + r + r2 + ... + rL =
1− rL+1

1− r
.

Here, 1+r+r2+. . .+rL−1 represents the number of
nodes in a balanced tree where all paths are length
L − 1. Adding another node to this tree creates
a tree with one path of length of L. The upper
bound on n corresponds to a balanced tree in which
all paths have length L. Solving the left inequality
yields nr − n− r + 2 ≤ rL and taking the log base
r of both sides yields logr(nr − n− r + 2) ≤ L and
the hypothesis.

3 The Average Case Path
Length

The average path length, APL, of an MDD of an
n-variable r-valued function is computed by sum-
ming the path lengths for all rn assignments to the
variables and dividing by rn. In this section, we
consider the APL for three specific functions.

3.1 ALL MAX Function

Consider an n-variable r-valued function,
ALL MAXr(n), that is r − 1 when all n variables
are r − 1 and is 0 otherwise. The MDD for this
function is shown in Fig. 3. Since this function
is symmetric, all orderings yield the same MDD.
From the top node, there is an edge to terminal
node 0 that is taken when the top variable is 0, 1,
... , or r − 2 and an edge to a node that realizes
this same function for n− 1 variables when the top
variable is r − 1. Thus, we can write

APLALL MAXr(n) = 1 +
1
r
APLALL MAXr(n−1).

This can be seen as follows. The first term, a
constant 1, represents the fact that all paths have
length at least 1. That is, all edges from the root
node lead to a terminal node except 1

r of them which
go to an MDD for the ALL MAXr(n−1) function.
This recurrence relation can be solved given the ini-
tial condition APLALL MAXr(1) = 1, as

APLALL MAXr(n) =
r

r − 1

[
1− 1

rn

]
.

For r = 2, the ALL MAXr(n) function cor-
responds to the AND function and, we have

 0 1 2

01…r-2 r-1

01…r-2 r-1

01…r-2 r-1

01…r-2 r-1

x1

x2

x3

xn

Figure 3: The ALL MAX function, a function
whose MDD has a small APL.

APLALL MAX2(n) = 2(1 − 1
2n). For large n and

general r, we have

APLALL MAXr(n) ∼
r

r − 1
.

Notice that the APL for large n decreases from
2 when r = 2 to approximately 1 when r is large.
This occurs because, as r increases, so also do the
number of edges from the root node to the terminal
node 0, which has the effect of decreasing the APL.

Lemma 3.1. The average path length in an MDD
of an n-variable r-valued function fn is bounded
below by r

r−1

[
1− 1

rn

]
. There is a function that

achieves this bound.

Proof The proof proceeds by induction. The min-
imum average path length is achieved in an MDD
of an n-variable function where all arcs from the
root node extend to a logic value (terminal node)
except one which extends to a (sub) MDD of a
function that achieves the minimum average path
length over all n−1-variable functions. That is, the
ALL MAXr(n) function achieves the minimum av-
erage path length.

3.2 MAX Function

Another multiple-valued function that corresponds
to the AND function when r = 2 is the MAX func-

4

 0 1 2

0 1 2

0

1

201 2

010

1

2

2

01 210

2

Figure 4: MDD of the 3-valued MAX function.

tion, whose function value is the maximum of its
variable values. The MDD of the 3-valued MAX
function is shown in Fig. 4.

Theorem 3.2.

APLMAXr(n) = r

[
1−

(
r − 1

r

)n]
.

Proof Since the MAX function is symmetric, any
order of the variables corresponds to the minimum
average path length order. The path length asso-
ciated with a specific assignment of values to the
n variables in this ordering is the index of the first
occurrence of r−1. For example, all assignments in
which the top variable is r−1 correspond to a path
of length 1. We can write

APLMAXr(n) =

1
rn

[(
n∑

i=1

(r − 1)i−1rn−ii

)
+ (r − 1)nn

]
.

Here, each term in the summation contributes the
number of assignments of values to the variables
such that xi is the first occurrence of r−1. That is,
for each i, x1, x2, ..., and xi−1 occur as 0, 1, ..., and
r − 2 in (r − 1)i−1 ways, while xi+1, xi+2, ..., and
xn occur as 0, 1, ..., and r − 1 in rn−i ways. Each
of these (r− 1)i−1rn−i assignments of values to the
variables corresponds to a path of length i, since
the function value (m− 1) is known when xi is the
first variable (from the top of the MDD) to have the

0 1 2

0 1

0 001
1

12
2

2

2

0 001
1

12
2

2

Figure 5: MDD of a 3-valued MODSUM function.

maximum value, m− 1. The term outside the sum
represents all assignments of values to the variables
in which m − 1 occurs nowhere. Such assignments
correspond to a path length of n, because the ab-
sence of the maximum value requires that all values
be checked. The sum can be rewritten as

APLMAXr(n) =
1
r

(
n∑

i=1

r − 1
r

i−1

i

)
+

(
(r − 1)

r

)n

n

=
1
r

(
n∑

i=1

xi−1i

)

x= r−1
r

+
(

(r − 1)
r

)n

n. (4)

The right sum in 4 is equivalent to d
dx

1−xn+1

1−x . Mak-
ing the appropriate substitutions yields the expres-
sion in the hypothesis.

For r = 2, APLMAX2(n) = 2(1 − 1
2n), which

agrees with the expression of the previous func-
tion. For fixed r, the expression for APLMAXr(n)

approaches r as n increases. It is interesting to com-
pare this with the ALL MAXr(n) function, where
the APL decreases (to 1) as r increases.

3.3 MODSUM Function

The MDD of the MODSUM function is shown in
Fig. 5. The value of MODSUMr(n) function is
the sum of the variable values modulo r. Taking the
approach illustrated in Theorem 3.2, we can state

Theorem 3.3.

APLMODSUMr(n) = n.

5

Proof The proof of Theorem 3.3 follows directly
from the observation that the value of the func-
tion depends on knowing all variable values. Since
the MODSUM function is symmetric on its vari-
ables, any ordering yields the MDD of shortest
APL. Given some ordering of the variables, if we
know the values of the first n − 1 variables, the
last value still must be known before the function’s
value can be determined. It follows that all paths
in any MDD of the MODSUM function have length
n. Therefore, the APL is n.

The MODSUM function is among a set of func-
tions for which the APL is the maximum APL. As
shown above, this set has the unusual property that
all orderings yield an MDD in which all paths have
length n.

We can characterize this set of functions. First,
we adapt to multiple-valued functions a definition
introduced by Moret [12] for switching functions.

Definition 3.1. Given a function f(x1, x2, . . . , xn),
a variable xi is indispensible if, for all assignments
α1, α2, . . . , αi−1αi+1, . . . , αn of values to the vari-
ables x1, x2, . . . , xi−1xi+1, . . . , xn there are values
α′i and αi of xi such that f(α1, α2, . . . , αi, . . . , αn) 6=
f(α1, α2, . . . , α

′
i, . . . , αn).

Definition 3.2. A function f(x1, x2, . . . , xn) is
maximally indispensible if all of its variables are in-
dispensible.

Example 3.1. For switching functions, there
are exactly two maximally indispensible functions,
f(x1, x2, . . . , xn) = x1⊕x2⊕. . .⊕xn and its comple-
ment. In this case, changing any variable changes
the function value. For r-valued functions, the
MODSUM function is maximally indispensible.

The significance of maximally indispensible func-
tions is expressed as follows.

Theorem 3.4. Among all n-variable r-valued func-
tions, the set of maximally indispensible functions is
uniquely the functions with the maximum APL, n.

Proof The proof proceeds in two parts. First, we
show that a maximally indispensible function has
an MDD with the maximum APL. Second, we show
that a non-maximally indispensible function has an
MDD with an APL strictly less than n.

Consider a maximally indispensible function f
and some path, corresponding to an assignment
α1, α2, . . . , αn in the MDD of f . For the APL of
f to be n, all paths must have length n. On the

contrary, if the path associated with α1, α2, . . . , αn

is shorter than n, there is some variable xi not in-
cluded in the path. It follows that changing αi has
no effect on this path and the function value is un-
changed by any change in αi. It follows that the
function is not maximally indispensible, a contra-
diction.

Consider a non-maximally indispensible function
g. From the definition, there is some assignment
α1, α2, . . . , αn of values to the variables and some
variable xi such that g(α1, α2, . . . , αi, . . . , αn) =
g(α1, α2, . . . , α

′
i, . . . , αn), where αi is any of the r

values. Consider a reduced ordered MDD for g with
the variables ordered in some way. We can form a
tree from this MDD in which all assignments of val-
ues to variables have a unique path. The path as-
sociated with α1, α2, . . . , αn need not have a node
associated with xi, since for this assignment, the
function is independent of xi. Thus, the path length
associated with α1, α2, . . . , αn is strictly less than n,
and, thus, the APL is strictly less than n.

4 The Average Case Path
Length For Sets of Functions

Previously, we have considered the extreme values
for the APL of individual functions. In this section,
we consider the average path length for two sets of
functions, symmetric and all functions.

4.1 Symmetric Functions

We seek an average of averages, defined as follows.

Definition 4.1. Let APLSym(n, r) and
APLAll(n, r) be the average APL of the MDD’s of
all symmetric and all n-variable r-valued functions,
respectively.

From the value of APLSym(n, r) and APLAll(n, r),
we understand how a typical APL relates to the
extremes. First, we consider symmetric functions.

Lemma 4.1.

APLSym(n, r) = APLSym(n− 1, r) + 1− 1

r(
r+n−2

r−1)
.

Proof In the MDD of a symmetric function, the
order of variables is unimportant. A typical MDD
for an n-variable function can be viewed as a root
node with r arcs each emanating to a typical MDD

6

for an n − 1-variable symmetric function. Thus,
APLSym(n, r) can be written as

APLSym(n, r) = r
1
r
(APLSym(n− 1, r) + 1)

− 1
rCr(n−1)

,

where Cr(n− 1) is the number of compositions (or-
dered partitions) of n−1 into r non-negative parts.
The expression rCr(n−1) counts the number of r-
valued symmetric functions on n− 1 or fewer vari-
ables [3]. It is a deduction for the case where the r
symmetric subfunctions, f0, f1, ... , and fr−1, are
all the same. In this case, the root node is redun-
dant and the realized function is dependent on n−1
or fewer variables. Therefore, it is not counted in
APLSym(n, r).

We can solve for an expression for APLSym(r, n)
as follows.

Theorem 4.2.

APLSym(n, r) = n−
n−1∑

i=0

1

r(
r+n−1

r−1)
.

The average APL for symmetric functions is n less
a function of r and n, which approaches a con-
stant depending on r as n becomes large. Table
2, which shows the expressions for APLSym(n, r)
for 2 ≤ r ≤ 10 for large n, shows that this con-
stant is small. It follows that the average APL for
symmetric functions approaches n, as n increases,
and, for this case, the average APL is close to the
maximum possible APL, n.

4.2 All Functions

Consider the average APL over all functions. In
computing this, it is convenient to fix the ordering
of variables, described as Π. The APL for an n-
variable r-valued function for a fixed ordering of the
variables represents an upper bound on the average
APL (when one is allowed to adapt the ordering to
produce the smallest APL).

Lemma 4.3.

APLAll(n, r,Π) = APLAll(n− 1, r,Π) + 1− 1
rrn−1 ,

where Π is some fixed ordering of variables.

Proof This proof is the same as for the symmetric
functions except for the deduction, 1

rrn−1 , associ-
ated with any function on n− 1 variables.

We can solve for APLAll(n, r,Π) as follows.

Theorem 4.4.

APLAll(n, r,Π) = n−
n−1∑

i=0

1
rri

for large n.

Table 1: APLSym(n, r) and Upper Bound for
APLAll(n, r) for Large n

r APLSym(n, r) APLAll(n, r, Π)

2 n-1.000000 n - 0.816422
3 n-0.371759 n - 0.370421
4 n-0.253907 n - 0.253906
5 n-0.200320 n - 0.200320
6 n-0.166688 n - 0.166688
7 n-0.142858 n - 0.142858
8 n-0.125000 n - 0.125000
9 n-0.111111 n - 0.111111

10 n-0.100000 n - 0.100000

Table 1 shows the expressions for APLAll(n, r, Π)
for 2 ≤ r ≤ 10. It is interesting that this upper
bound on the APL for all functions is nearly the
same as for symmetric functions when r ≥ 3. We
have not found the average value for all functions,
APLAll(n, r), but conjecture that it is asymptotic
to n.

5 Concluding Remarks

In this paper, we consider the average path length or
APL of MDD’s, as measured by the average number
of edges traversed from the root node to a terminal
node. We have shown that the APL, for some func-
tions, such as the carry-out, is strongly dependent
on the ordering of the variables. We have calcu-
lated the APL for various classes of functions. This
is summarized in Table 2.

It should be noted that these results extend triv-
ially to other types of functions. For example, the
APL for the MIN function is identical to the APL
of the MAX function, since their MDDs are isomor-
phic. Similarly, the ALL MIN function has an APL
that is identical to the APL of the ALL MAX func-
tion.

References

[1] B. Becker, and R. Dreschler, “Efficient graph based
representation of multi-valued functions with an

7

Table 2: Summary of Average Path Length in
BDD’s of Various Functions for Large n

Function APL

MODSUM n*
ALL MAX r

r−1

MAX r

All Symmetric n−
n−1X
i=0

1

r(
r+n−1

r−1)
*

All ≤ n−
n−1X
i=0

1

rri

* Exact value.

application to genetic algorithms,” Proc. 24th In-
ter. Symp. on Multiple-Valued Logic, pp. 40–45,
1994.

[2] J.T. Butler, D.S. Herscovici, T. Sasao, and R.J.
Barton, “Average and worst case number of nodes
in decision diagrams of symmetric multiple-valued
functions,” IEEE Trans. on Computers, pp. 491–
494, April 1997.

[3] J.T. Butler, and T. Sasao, “On the properties of
multiple-valued functions that are symmetric in
both variable values and labels,” Proc. 28th In-
ter. Symp. on Multiple-Valued Logic, pp. 83–88,
May 1998.

[4] M. Hanani, “An optimal evaluation of Boolean ex-
pressions in an online query system,” Comm. of
the ACM, Vol. 20, pp. 344–347, May 1977.

[5] Y. Iguchi, T. Sasao and M. Matsuura, ”Evaluation
of multiple-output logic functions using decision di-
agrams,” ASP-DAC 2003, (Asia and South Pacific
Design Automation Conference 2003), Kitakyusu,
pp. 312–315 Jan. 21 - 24, 2003.

[6] T. Kam, T. Villa, R.K. Brayton, and A.L.
Sangiovanni-Vincentelli, “Multi-valued decision di-
agrams: Theory and applications,” Inter. J. on
Multiple-Valued Logic, Vol. 4, No. 1-2, pp. 9–62,
June 1998.

[7] C. Lee, “Representation of switching circuits by
binary-decision programs,” Bell System Tech. J.,
Vol. 19, pp. 985–999, July 1959.

[8] Y.Y. Liu, K.H. Wang, T.T. Hwang, and C.L. Liu,
“Binary decision diagram with minimum expected
path length,” DATE2001, pp. 1–5, 2001.

[9] P. McGreer, K. McMillan, A. Saldanha, and A.
Sangiovanni-Vincentelli, “Fast discrete function
evaluation using decision diagrams,” Proc. of In-
ter. Conf. on Computer-Aided Design, pp. 402–
407, Nov. 1995.

[10] D.M. Miller, “Multiple-valued logic design tools,”
Proc. 23rd Inter. Symp. on Multiple-Valued Logic,
pp. 2–11, May 1993.

[11] M. Miyakawa, N. Otsu, and I.G. Rosenberg, “Vari-
able selection heuristics and optimum decision
trees – an experimental study,” Proc. 32nd In-
ter. Symp. on Multiple-Valued Logic, pp. 238–244,
May 2002.

[12] B.M.E. Moret, “Decision trees and diagrams,”
Computer Surveys, Vol. 14, No. 4, pp. 593–623,
1982.

[13] S. Nagayama, T. Sasao, Y. Iguchi, and M. Mat-
suura, “Representation of logic functions using
QRMDDs,” Proc. 23rd Inter. Symp. on Multiple-
Valued Logic, pp. 261–267, May 2002.

[14] T. Sasao, and J.T. Butler, “A method to rep-
resent multiple-output switching functions using
multi-valued decision diagrams,” Proc. 26th In-
ter. Symp. on Multiple-Valued Logic, pp. 248–254,
May 1996.

[15] T. Sasao, J.T. Butler, and M. Matsurra, “Aver-
age path length as a paradigm for the fast evalua-
tion of functions represented by binary decision di-
agrams,” Proc. 1st Inter. Symp. on New Paradigm
VLSI Computer, pp. 31–36, Dec. 2002.

[16] T. Sasao, Y. Iguchi and M. Matsuura, ”Compari-
sion of decision diagrams for multiple-output logic
functions,” International Workshop on Logic and
Synthesis (IWLS2002), New Orleans, Louisiana,
pp.379–384, June 4-7, 2002.

[17] A. Srinivasan, T. Kam, S. Malik, and R.K. Bray-
ton, “Algorithms for discrete function manipula-
tion,” Proc. ICCAD-1990, pp. 92–95, Oct. 1990.

[18] A. Thayse, M. Davio, and J.P. Deschamps, “Op-
timization of multiple-valued decision diagrams,”
Proc. 8th Inter. Symp. on Multiple-Valued Logic,
pp. 171–177, May 1978.

8

